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Abstract. A numerical and experimental study of a control method aimed at channeling chaos by building
barriers in phase space is performed on a paradigm for wave-particle interaction, i.e., a traveling wave
tube. Control of chaotic diffusion is achieved by adding small apt modifications to the system with a low
additional cost of energy. This modification is realized experimentally through additional waves with small
amplitudes. Robustness of the method is investigated both numerically and experimentally.

PACS. 05.45.Gg Control of chaos, applications of chaos – 52.20.-j Elementary processes in plasmas

1 Introduction

The interaction of a beam of charged particles with elec-
tromagnetic waves is ubiquitous in physics, and it is cen-
tral to many useful devices such as particle accelerators,
plasma fusion experiments or free electron lasers. In these
experimental set-ups, the waves are used to accelerate the
particles or to guide them by assigning a specific mean tra-
jectory. However, the dynamics of these systems is usually
characterized by the competition of many degrees of free-
dom and thus, shows generically chaotic behaviors. Such
behaviors represent a limit to the achievement of high per-
formances in these devices. Consequently, there has been a
growing interest in controlling chaos which here means to
reduce it when and where it is undesirable and to increase
it when it is useful.

The sensitivity of chaotic systems to small perturba-
tions triggered a strong interdisciplinary effort to control
chaos [1–8]. After the seminal work on optimal control
by Pontryagin [9], efficient methods were proposed for
controlling chaotic systems by nudging targeted trajec-
tories [10–14]. However, for many body experiments such
methods are hopeless due to the high number of trajecto-
ries to deal with simultaneously.

It was recently proposed a local control method [15]
which aims at building barriers in phase space and hence
confines all the trajectories rather than following them in-
dividually. These barriers are stable structures in phase
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space like for instance invariant tori, which are generically
broken by the perturbation. The reduction of chaotic be-
haviors is achieved by using a small apt perturbation of
the system which keeps its Hamiltonian structure.

In this article, we consider a traveling wave tube
(TWT) specially designed to study wave particle interac-
tion which is used to investigate experimentally the con-
trol method and its robustness. The dynamics in this ex-
perimental apparatus can be accurately represented using
a Hamiltonian which describes the motion of a charged
particle (with unit mass) interacting with two electrostatic
waves [16]:

H(p, x, t) =
p2

2
+ ε1 cos(k1x − ω1t + ϕ1)

+ ε2 cos(k2x − ω2t + ϕ2), (1)

where (p, x) ∈ R × [0, L] are the momentum and position
of the particle in a tube of length L. The amplitudes,
wave numbers, frequencies and phases of the two waves
are denoted respectively εi, ki, ωi and ϕi for i = 1, 2. We
notice that the beam intensity is sufficiently low such that
the wave growth rate is negligible upon the length of the
experiment that is we are in the test-particle regime.

Generically, the dynamics of the particles governed by
Hamiltonian (1) is a mixture of regular and chaotic be-
haviors, mainly depending on the amplitudes of the waves.
The Chirikov parameter [17] defined as the ratio between
the two half-width of the primary resonances by the dis-
tance between these resonances, i.e.,

s =
2

(√|ε1| +
√|ε2|

)

|ω2/k2 − ω1/k1| , (2)
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gives a first rough approximation of the chaoticity de-
gree of the system. Hamiltonian (1) has a typical behav-
ior of integrable system for small values of this parame-
ter (s � 1). For large enough amplitudes of the waves
(s ∼ 1), large scale chaos occurs in phase space. As a con-
sequence, the particle can have an arbitrary velocity in
between the two phase velocities of the waves (ω2/k2 and
ω1/k1). In this TWT, such typical chaotic behavior has
been observed directly [18]. This chaotic diffusion of the
particles in phase space can be reduced by using an apt
control term which consists here as an additional wave
(or more generally a set of waves) of small amplitude.
The characteristics of this additional wave are computed
explicitly, and then the wave is injected in addition to
the two others. The results presented in this article were
announced in reference [19].

The paper is organized as follows: the control method
is briefly recalled in Section 2.1 and its application to the
considered Hamiltonian is presented in Section 2.2. Nu-
merical investigations of the effect of the control term
and its robustness are reported in Sections 2.3 and 2.4.
In Section 3.1, a description of the experimental set-up
precedes the results of the implementation of the control
term shown in Section 3.2 as well as its robustness in Sec-
tion 3.3.

2 Local control method applied
to a two wave model

The Hamiltonian of an integrable system can be locally
written as a function H0(A) of the action variables A =
(A1, A2, . . . , Ad) ∈ R

d, i.e. it does not depend on the
conjugate angle variables θ = (θ1, θ2, . . . , θd) ∈ T

d =
R

d/(2πZ)d, where T
d is the d-dimensional torus param-

eterized by [0, 2π[d. The equations of motion for H0(A)
show that the action variables are constant, and conse-
quently the trajectories with given actions A are confined
to evolve on a d-dimensional torus with frequency vector
ω0(A) = ∂H0/∂A. The dynamics on this torus is periodic
or quasi-periodic: θ(t) = ω0(A)t + θ(0) with frequency
vector ω0(A). In the particular case given by Hamilto-
nian (1) an integrable situation is given by ε1 = ε2 = 0 so
that the dynamics of the integrable system H = p2/2 is
characterized by constant velocity (p = const.). A monoki-
netic beam of charged particles remains monokinetic.

If the system described by H0 is perturbed, i.e. we
consider the Hamiltonian

H(A, θ) = H0(A) + V (A, θ),

the integrability is generically lost and the system becomes
chaotic. Even if KAM theorem establishes the stability
with respect to small perturbations of invariant tori with
a sufficiently incommensurate frequency vector these tori
are destroyed when the amplitude of the perturbation V is
large enough. The break-up of invariant tori leads to a loss
of stability of the system until the last invariant torus of
the integrable case is destroyed and then large scale diffu-
sion occurs in phase space. In the case of a beam of charged

particles whose dynamics is given by Hamiltonian (1), for
ε1, ε2 sufficiently large, an initially monokinetic beam will
spread in velocity due to this diffusion.

2.1 Expression of the local control term

The aim is to provide an explicit expression for an addi-
tional perturbation such that a specific invariant torus is
reconstructed in the modified system. We state here the
main result which has been extensively described in refer-
ence [15]: we consider Hamiltonian systems written as

H(A, θ) = ω · A + W (A, θ),

where ω is a non-resonant vector of R
d. Without loss of

generality, we consider a region near A = 0 (by transla-
tion of the actions) and, since the Hamiltonian is nearly
integrable, the perturbation W has constant and linear
parts in actions of order ε, i.e.

W (A, θ) = εv(θ) + εw(θ) · A + Q(A, θ), (3)

where Q is of order O(‖A‖2). We notice that for ε = 0,
the Hamiltonian H has an invariant torus with frequency
vector ω at A = 0 for any Q not necessarily small. The
controlled Hamiltonian we construct is

Hc(A, θ) = ω · A + W (A, θ) + f(θ). (4)

The control term f we construct only depends on the angle
variables and is given by

f(θ) = W (0, θ) − W (−Γ∂θW (0, θ), θ) , (5)

where ∂θ is the derivative operator with respect to θ, and
Γ is a linear operator defined as a pseudo-inverse of ω ·∂θ,
i.e. acting on W =

∑
k Wkeik·θ as

ΓW =
∑

ω·k �=0

Wk

iω · keik·θ.

Note that f is of order ε2. For any function W , Hamilto-
nian (4) has an invariant torus with frequency vector close
to ω. The equation of the torus which is restored by the
addition of f is

A = −Γ∂θW (0, θ), (6)

which is of order ε for W given by equation (3).

2.2 Computation of the control term for a two wave
system

We consider Hamiltonian (1) with two waves, where the
wavenumbers are chosen according to a dispersion relation
k1 = K(ω1) and k2 = K(ω2) plotted in Figure 1.

In order to compute f , Hamiltonian (1) with 1.5 de-
grees of freedom is mapped into an autonomous Hamil-
tonian with two degrees of freedom by considering that
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Fig. 1. TWT dispersion relation (circles) with the helix mode
at 30 MHz (square) and the beam mode at the same fre-
quency but with propagation velocity chosen equal to about
2.5 × 106 m/s (triangle); the control wave corresponds to the
beating of these two modes.

t mod 2π is an additional angle variable. We denote E its
conjugate action. The autonomous Hamiltonian is

H(E, p, x, t) = E +
p2

2
+ ε1 cos(k1x − ω1t + ϕ1)

+ ε2 cos(k2x − ω2t + ϕ2). (7)

Then, the momentum p is shifted by ω in order to define
a local control in the region p ≈ 0. The Hamiltonian is
rewritten as

H = E + ωp + ε1 cos(k1x − ω1t + ϕ1)

+ ε2 cos(k2x − ω2t + ϕ2) +
p2

2
. (8)

We rewrite Hamiltonian (8) into the form (3) where:

εv(x, t) = ε1 cos(k1x − ω1t + ϕ1)
+ ε2 cos(k2x − ω2t + ϕ2),

w(x, t) = 0,

Q(p, x, t) = p2/2.

The frequency vector of the selected invariant torus is ω =
(ω, 1). From equation (5) we have that f is given by

f(x, t) = −ε2

2
(Γ∂xv)2,

which is

f(x, t) = −1
2

[
ε1k1

ωk1 − ω1
cos(k1x − ω1t + ϕ1)

+
ε2k2

ωk2 − ω2
cos(k2x − ω2t + ϕ2)

]2

, (9)

provided ω �= ω1/k1 and ω �= ω2/k2. Adding this exact
control term to Hamiltonian (1), the following invariant

rotational torus is restored:

p(x, t) = ω − ε1k1

ωk1 − ω1
cos(k1x − ω1t + ϕ1)

− ε2k2

ωk2 − ω2
cos(k2x − ω2t + ϕ2). (10)

This barrier of diffusion prevents a beam of particles to
diffuse everywhere in phase space. We emphasize that the
barrier persists for all the magnitudes of the waves (ε1, ε2).

The control term (9) has four Fourier modes,
(2k1,−2ω1), (2k2,−2ω2), ((k1 + k2),−(ω1 + ω2)) and
((k1 − k2),−(ω1 − ω2)). If we want to restore an invari-
ant torus in between the two primary resonances approxi-
mately located at p ≈ ω1/k1 and p ≈ ω2/k2, the frequency
ω has to be chosen between the two group velocities of the
waves. If we consider a beam of particles with a velocity in
between the velocities of the waves, i.e., v1 = ω1/k1 and
v2 = ω2/k2, the main Fourier mode of the control term is

f2 = − ε1ε2k1k2

2(ωk1 − ω1)(ωk2 − ω2)

× cos[(k1 + k2)x − (ω1 + ω2)t + ϕ1 + ϕ2].

A convenient choice is ω = (v1 + v2)/2 and the control
term is given by:

f2 =
2ε1ε2

(v1 − v2)2
cos[(k1+k2)x−(ω1+ω2)t+ϕ1+ϕ2]. (11)

Using this approximate control term does not guarantee
the existence of an invariant torus. However, since the dif-
ference between f given by equation (9) and f2 given by
equation (11) is small, it is expected that for a Chirikov
parameter s not too large, the effect of the control term
is still effective and the barrier is restored close to

p(x, t) =
v1 + v2

2
+

2ε1 cos(k1x − ω1t + ϕ1)
v1 − v2

− 2ε2 cos(k2x − ω2t + ϕ2)
v1 − v2

. (12)

2.3 Numerical results

In this section we perform a numerical investigation of
the effect of the exact and approximate control terms
on the electron beam dynamics. We introduce the pa-
rameter r given by the ratio of the two wave ampli-
tudes r = ε1/ε2. In order to reproduce as close as pos-
sible the experimental set-up described in next section
(see also [18]), we consider the following values of am-
plitudes, wave numbers, frequencies and phases of the
two electrostatic waves: (ε1, k1, ω1, ϕ1) = (εr, 1, 0, 0) and
(ε2, k2, ω2, ϕ2) = (ε, k, k, 0). Thus Hamiltonian (1) can be
written as

H(p, x, t) =
p2

2
+ εr cosx + ε cos[k(x − t)], (13)
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i.e. v1 = 0 and v2 = 1. We perform simulations with
r = 0.082 and k = 5/3. The amplitudes of the waves are
determined by r and ε that are related to the Chirikov
parameter by the following equation:

s = 2
√

ε
(√

r + 1
)
. (14)

The value of ε will be given by s. In the following we
consider two values of s, that is s = 0.85 (ε ∼ 0.11) and
s = 1.27 (ε ∼ 0.24). In this case the expression of the
exact control term given by equation (9) becomes

f(x, t) = −2ε2(r cosx − cos k(x − t))2, (15)

while the approximate control term given by equa-
tion (11) is

f(x, t) = 2ε2r cos[(k + 1)x − kt]. (16)

Poincaré sections of Hamiltonian (13) computed for two
values of the Chirikov parameter, s = 0.85 and s = 1.27,
are depicted in Figures 2 and 3, panels (a). We no-
tice that in both cases no rotational invariant tori sur-
vive and therefore trajectories can diffuse over the whole
phase space in between the two primary resonances. As
expected, when the exact control term given by equa-
tion (15) is added to the original Hamiltonian, then ro-
tational invariant tori are restored. This is shown by the
two Poincaré sections in Figures 2 and 3, panels (b), cor-
responding to the two values s = 0.85 and s = 1.27 of the
Chirikov parameter. We notice that s = 1.27 corresponds
to a chaotic regime where the two resonances overlap ac-
cording to Chirikov criterion (s ≥ 1). Nevertheless the ex-
act control term is able to reconstruct the invariant torus
predicted by the method and to regularize a quite large
region around the recreated invariant torus.

In order to study the effect of a simplified control term
on the electron beam dynamics we perform numerical sim-
ulations adding the control term given by equation (16)
to Hamiltonian (13). As one can see from the Poincaré
section depicted in Figure 2, panels (c), the effect of the
approximate control term is still present with the recre-
ation of a set of invariant tori for s = 0.85. However, this
regularization apparently disappears when we consider the
fully chaotic regime with s = 1.27 (see Fig. 3, panel (c)).
Nevertheless the approximate control term has still a sig-
nificant effect on the reduction of chaotic diffusion. This
fact can be observed on the probability distribution func-
tions of the electron beam velocity. This diagnostic will
also be used in the experiment in order to see the effect
of the control terms.

In Figures 4 and 5, the initial velocity distribution
function of a set of 104 particles is compared with the final
one obtained by integrating over a time t = 50, the dynam-
ics governed by Hamiltonian (13) without control terms,
plus the exact control term (15) and plus the approxi-
mate control term (16). This investigation is performed
for the two different values of the Chirikov parameter,
s = 0.85 for Figure 4 and s = 1.27 for Figure 5. In the case
without any control term the original kinetic coherence of
the beam is lost which means that some electrons can

Fig. 2. Poincaré sections of Hamiltonian (13) for s =
0.85 without control term (panel (a)), plus the exact con-
trol term (15) (panel (b)) and plus the approximate control
term (16) (panel (c)).

have velocities in the whole range in between resonances,
v ∈ [−0.67, 0.88]. Adding the exact control term the par-
ticles are confined in a selected region of phase space by
the reconstructed invariant tori, and the beam recovers a
large part of its initial kinetic coherence. For s = 0.85,
velocities of the electrons are now between 0.33 and 0.79.
The exact control term is also efficient in the fully chaotic
regime (s = 1.27). Concerning the approximate control
term it is very efficient for s = 0.85 while its efficiency
is smaller in the strongly chaotic regime. However, it has
still some regularizing effect, inducing the reconstruction
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Fig. 3. Poincaré sections of Hamiltonian (13) for s =
1.27 without control term (panel (a)), plus the exact con-
trol term (15) (panel (b)) and plus the approximate control
term (16) (panel (c)).

of stable islands in phase space which can catch and thus
confine a portion of the initial beam particles.

2.4 Robustness of the method

The robustness of the control method for the case s = 1.27
is studied with respect to an error on the phase or on the
amplitude of the computed control term. In experiment,
given the frequency ω1 + ω2, the wave number k1 + k2 of
the control term does not satisfy in general the disper-
sion relation k = K(ω) since the dispersion relation is not
linear. In our case it means that the experimentally imple-
mented control term is not the exact one. For this reason

Fig. 4. (a) Initial beam velocity distribution function for
s = 0.85. (b) Final beam velocity distribution function without
control term (9) (light gray line), with the exact control term
(black line) and with the approximate control term (16) (dark
gray line).

we investigate the robustness of the control term given by
equation (16) with a phase error ϕ, that is

f(x, t) = 2ε2r cos[(k + 1)x − kt + ϕ], (17)

and with an error on its amplitude ruled by a factor δ,
that is

f(x, t) = 2ε2rδ cos[(k + 1)x − kt]. (18)

The values given by equation (16) are ϕ = 0 and δ = 1.
In order to quantify the robustness of the approximate
control term given by equation (17) or equation (18), we
introduce the kinetic coherence indicator defined as the
ratio of the variance of the initial beam over the variance
of the distribution function after a given integration time.
The number of particles, the integration time and the ini-
tial conditions are equal to the ones used in the previous
section.

In Figure 6 we show the kinetic coherence as a func-
tion of the phase of the approximate control term for the
strongly chaotic regime s = 1.27. We notice that ϕ or
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Fig. 5. (a) Initial beam velocity distribution function for
s = 1.27. (b) Final beam velocity distribution function without
control term (9) (light gray line), with the exact control term
(black line) and with the approximate control term (16) (dark
gray line).

−ϕ will give the same velocity distribution function for
symmetry reason. Therefore we only consider the range
ϕ ∈ [0, π]. The efficiency of the approximated control term
is very sensitive with respect to the phase. In fact an error
of 5−6◦ causes a decrease of the kinetic coherence of about
50% and with an error greater than 30◦ the kinetic coher-
ence drops in the range of values of the non-controlled
case.

Concerning the robustness with respect to an error on
the amplitude of the approximate control term, we plot
in Figure 7 the behavior of the kinetic coherence as a
function of the δ-factor which multiplies the amplitude
of the approximate control term. We notice that around
the reference value of δ = 1 (no error) there is a region
(δ ∈ [1, 1.3]) where the approximate control term is very
efficient in confining the beam of test particles with a ki-
netic coherence in between [0.096, 0.12]. On the other hand
reducing the amplitude of the control term, i.e. its energy,
there is a region where one has still a confining effect on
the beam particle.

Fig. 6. Kinetic coherence versus the phase introduced in the
approximate control term given by equation (17). The red
dash-dotted line indicates the kinetic coherence value for the
non-controlled case and the dotted line the kinetic coherence
value for the approximate control term. The overlap parameter
is s = 1.27.

Fig. 7. Kinetic coherence versus δ for the approximate control
term given by equation (18). The red dash-dotted line indicates
the kinetic coherence value for the non-controlled case and the
dotted line the kinetic coherence value for the approximate
control term given by equation (16). The overlap parameter is
s = 1.27.

3 Experimental tests

3.1 Experimental set-up

The experimental implementation of the control term is
performed in a long traveling wave tube (TWT) [20,21] ex-
tensively used to mimic beam plasma interaction [22,23]
and recently to observe resonance overlap responsible for
Hamiltonian chaos [18]. The TWT sketched in Figure 8
is made up of three main elements: an electron gun, a
slow wave structure (SWS) formed by a helix with axially
movable antennas, and an electron velocity analyzer. The
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Fig. 8. Sketch of the Travelling Wave Tube: (1) helix, (2) elec-
tron gun, (3) trochoidal analyzer, (4) antenna, (5) glass vacuum
tube, (6) slotted rf ground cylinder, and (7) magnetic coil.

electron gun creates a beam which propagates along the
axis of the SWS and is confined by a strong axial mag-
netic field with a typical amplitude of 0.05 T which does
not affect the axial motion of the electrons. The central
part of the gun consists of the grid-cathode subassembly of
a ceramic microwave triode and the anode is replaced by a
Cu plate with an on-axis hole whose aperture defines the
beam diameter equal to 1 mm. Beam currents, Ib < 1 mA,
and maximal cathode voltages, |Vc| < 200 V, can be set
independently; an example of typical velocity distribution
functions is given in Figures 9 and 10 (panel (a)). Two
correction coils provide perpendicular magnetic fields to
control the tilt of the electron beam with respect to the
axis of the helix. For the data shown in this article Ib is
chosen weak enough to ensure that the beam induces no
wave growth and the beam electrons can be considered as
test electrons. The SWS is long enough to allow nonlin-
ear processes to develop. It consists in a wire helix that is
rigidly held together by three threaded alumina rods and
is enclosed by a glass vacuum tube. The pressure at the
ion pumps on both ends of the device is 2 × 10−9 Torr.
The 4 meter long helix is made of a 0.3 mm diameter Be-
Cu wire; its radius is equal to 11.3 mm and its pitch to
0.8 mm. A resistive rf termination at each end of the he-
lix reduces reflections. The maximal voltage standing wave
ratio is 1.2 due to residual end reflections and irregulari-
ties of the helix. The glass vacuum jacket is enclosed by an
axially slotted 57.5 mm radius cylinder that defines the rf
ground. Inside this cylinder but outside the vacuum jacket
are four axially movable antennas which are capacitively
coupled to the helix and can excite or detect helix modes
in the frequency range from 5 to 95 MHz. Only the he-
lix modes are launched, since empty waveguide modes can
only propagate above 2 GHz. These modes have electric
field components along the helix axis [23]. Launched elec-
tromagnetic waves travel along the helix with the speed
of light; their phase velocities, vφj , along the axis of the
helix are smaller by approximately the tangent of the
pitch angle, giving 2.8 × 106 m/s < vφj < 5.3 × 106 m/s.
Waves on the beamless helix are slightly damped, with
|k0i

j |/|k0r
j | ≈ 0.005 where k0 = k0r + i k0i is the beamless

Fig. 9. Beam velocity distribution functions at the output of
the TWT for s = 0.85: (a) test beam (Ib = 50 nA) with-
out electrostatic wave, (b) with helix mode (trapping domain
shown by red line with phase velocity marked by a square) and
beam mode (trapping domain shown by blue line with phase
velocity marked by a triangle) at 30 MHz, (c) with an addi-
tional controlling wave at 60 MHz and phase velocity given by
grey circle and dotted line.
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Fig. 10. Beam velocity distribution functions at the output of
the TWT for s = 1.27: (a) test beam (Ib = 2 nA) without elec-
trostatic wave, (b) with helix mode (trapping domain shown
by red line with phase velocity marked by a square) and beam
mode (trapping domain shown by blue line with phase veloc-
ity marked by a triangle) at 30 MHz, (c) with an additional
controlling wave at 60 MHz and phase velocity given by grey
circle and dotted line.

complex wave number. The dispersion relation closely re-
sembles that of a finite radius, finite temperature plasma,
but, unlike a plasma, the helix does not introduce appre-
ciable noise. Finally the cumulative changes of the electron
beam distribution are measured with the velocity ana-
lyzer, located at the end of the interaction region. This
trochoidal analyzer [24] works on the principle that elec-
trons undergo an E× B drift when passing through a
region in which an electric field E is perpendicular to a
magnetic field B. A small fraction (0.5%) of the electrons
passes through a hole in the center of the front collector,
and is slowed down by three retarding electrodes. Then
the electrons having the correct drift energy determined
by the potential difference on two parallel deflector plates
are collected after passing through an off-axis hole at the
back of the analyzer. The time averaged collected current
is measured by means of a pico-ampermeter. Retarding
potential and measured current are computer controlled,
allowing an easy acquisition and treatment with an en-
ergy resolution lower than 0.5 eV. In the absence of any
emitted wave, after propagating along the helix, the beam
exhibits a sharp velocity distribution function with a ve-
locity width mainly limited by the analyzer resolution as
shown in Figures 9 and 10 (panel (a)). For Figure 9a, the
beam with radius 3 mm is diffracted by passing through
the three grounded grids of a spreader [25] just after leav-
ing the gun while for Figure 10a, the beam radius is 1 mm
and the spreader has been removed for the sake of sim-
plicity.

3.2 Experimental implementation of the control term

We apply an oscillating signal at the frequency of 30 MHz
on one antenna. It generates two waves: a helix mode
with a phase velocity equal to vϕ = 4.07 × 106 m/s, a
beam mode with a phase velocity equal to the beam ve-
locity vb (in fact two modes with pulsation ω = kvb ± ωb

corresponding to the beam plasma mode with pulsation
ωb = (nbe

2/mε0)1/2, Doppler shifted by the beam veloc-
ity vb, merging in a single mode since ωb � ω in our
conditions). Figures 9 and 10 (panel (b)) show the mea-
sured velocity distributions of the beam after interacting
with these two modes over the length of the TWT for two
different values of the Chirikov parameter. The case with
s = 0.85 was previously investigated [19]. The red square
(resp. blue triangle) shows the phase velocity vϕ (resp. vb)
of the helix (resp. beam) mode on the middle of the reso-
nant domain determined as the trapping velocity width of
the helix mode vϕ ± 2

√
eChΦ/m (resp. vb ± 2

√
eCbΦ/m)

where Φ is the signal amplitude applied on the antenna
and ChΦ = 3542 mV (resp. CbΦ = 286 mV) is the real
amplitude of the helix (resp. beam) mode. Both Ch and
Cb are determined experimentally by the estimations of
the coupling constant for helix Ch (resp. beam Cb) mode.
As shown in Figure 11 the helix mode coupling coefficient
Ch is obtained by fitting a parabola through the mea-
sured upper bound velocity (circles) after the cold test
beam with initial velocity equal to the wave phase veloc-
ity has been trapped by the wave at a given frequency over
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Fig. 11. Helix mode coupling constant Ch calculated from the
measured upper bound velocity of trapping domain (circles)
at frequency f equal to (a) 30 MHz and (b) 60 MHz. Black
line parabola is obtained using the average value of Ch. Gray
parabolas are given by the average error. The parabolic fit
is only valid beyond the vertical segment indicating the wave
amplitude beyond which beam trapping occurs over the length
of the TWT.

the total length of the TWT. As shown in Figure 12, the
beam mode coupling coefficient Cb is obtained by fitting a
parabola through the measured upper bound velocity (cir-
cles) for a beam with a mean velocity very different from
the helix mode phase velocity at the considered frequency.
These two domains overlap and the break up of invari-
ant KAM tori (or barriers to velocity diffusion) results in
a large spread of the initially narrow beam of Figures 9
and 10 (panel (b)) over the chaotic region [18]. We now use
an arbitrary waveform generator [22] to launch the same
signal at 30 MHz and an additional control wave with
frequency equal to 60 MHz, an amplitude and a phase
given by equation (11). The beam velocity is also chosen
in such a way that the wave number of the helix mode at
60 MHz properly satisfies the dispersion relation function
shown as circles in Figure 1. We neglect the influence of
the beam mode at 60 MHz since its amplitude is at least
an order of magnitude smaller than the control amplitude
as shown by comparing Figures 11a and 12 for 30 MHz.

Fig. 12. Coupling constant Cb, at frequency equal to 30 MHz
for a beam mode at 2.5 × 106 m/s. Black line parabola is ob-
tained using the average value of Cb, calculated from the upper
bound velocity of the trapping domain between the vertical
segments where the beam become trapped over the length of
the TWT and the “devil’s staircase” is not yet evident [26].
Two independent measures are shown by circles and squares
to give an error estimate.

As observed in Figures 9 and 10 (panel (c)) where the
grey circle indicates the phase velocity of the controlling
wave, the beam recovers a large part of its initial kinetic
coherence. For s = 0.85 (see Fig. 9c) the beam does not
spread in velocity beyond the reconstructed KAM tori, in
agreement with the numerical simulations of Figure 2. For
the more chaotic regime (see Fig. 10b) with s = 1.27 the
improvement of the kinetic coherence is still present as
shown in Figure 10c. It can no more be associated with
the reconstruction of a local velocity barrier, as expected
from the numerical results in Figure 3 (panel (c)). For
this last overlap parameter an experimental exploration
of the robustness of the method will be shown in the next
section.

3.3 Robustness of the method

In our experiment the control term is given by an ad-
ditional wave whose frequency, amplitude and phase are
computed as shown in Section 2. In order to quantify the
robustness of the method we will compare the various ex-
perimental situations to a reference one (Fig. 10a). This
reference is taken as the (initial) cold beam distribution
function. An example of the distribution we were able to
reach with control is given in Figure 10c. The control am-
plitude is 140 mV in agreement with 144 mV given by the
method up to experimental errors. The phase is chosen
experimentally and arbitrarily labelled 0◦. The beam ve-
locity is chosen equal to 2.498×106 m/s in agreement with
2.51 × 106 m/s as estimated from the dispersion relation
shown in Figure 1.
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Fig. 13. (Color online) Distribution functions for the maxi-
mum kinetic coherence value (resp. minimum), blue line (resp.
red line), is compared with the non-controlled distribution
function (grey dashed line). The overlap parameter is s = 1.27.

We investigate the robustness of the control method
with respect to variation of phase and amplitude in the
approximate control term given by equation (11).

We use the kinetic coherence indicator to quantify the
effect of the control, defined as the ratio of variance of the
cold beam distribution function over the variance of the
distribution function. Other indicators (integral and uni-
form distances) were used and gave similar results. Fig-
ure 13 shows the velocity distribution functions for two
values of the phase (−5◦ and 22.5◦) keeping the other pa-
rameters constant. It shows that for a phase equal to −5◦
close to the reference value the two velocity distribution
functions are very similar, and more peaked at −5◦ than
at 0◦. For 22.5◦, the control wave has the opposite effect,
increasing chaos. In Figure 14 we show the kinetic coher-
ence as a function of the phase of the approximate control
term. It shows a narrow region around the reference value
where the control wave is the most efficient.

In Figure 15, we represent the kinetic coherence as
a function of the amplitude of the control wave. When
changing the control wave amplitude a resonance condi-
tion in a narrow region around the optimized amplitude is
still observed. For amplitudes smaller than the reference
(computed) value the effect of the control decays fast and
the electron velocities are more widely spread than in the
non-controlled case. Besides, for larger values, the beam
velocity spread increases but the control term energy be-
comes comparable to the beam mode energy changing rad-
ically the initial system. We have observed, due to beam
current conservation, a lower peak at initial beam veloc-
ity implies that electron velocities are more widely spread.
An enlargement of distribution around the main peak is
shown in Figures 16a and 16b and confirms that 140 mV
appears to be the optimum.

Finally we check the sensitivity of the control mode
with respect to the initial beam velocity. This corresponds
to introducing an error both on the wave number and on

Fig. 14. Kinetic coherence defined as the variance of the cold
beam distribution function over the variance of distribution
function for different control term phases, an optimized ampli-
tude 140 mV and a beam velocity 2.498 × 106 m/s. Control
becomes efficient in a narrow region close to zero. Solid line
shows the level of the kinetic coherence for the non-controlled
case. Dashed line is only an eye-guide. The overlap parameter
is s = 1.27.

Fig. 15. Kinetic coherence defined such as in Figure 14 for
different control amplitudes and a phase 0o and a beam ve-
locity 2.498 × 106 m/s. Control becomes efficient in a narrow
region around 140 mV. Solid line shows the level of the kinetic
coherence for the non-controlled chaos. Dashed line is only an
eye-guide. The overlap parameter is s = 1.27.

the amplitude of the control mode. The overlap param-
eter s depends on the phase velocity difference between
the helix and beam modes (see Eq. (2)); for such a reason
we also measure the non-controlled velocity distribution
function for each initial beam velocity. Figure 17a clearly
exhibits the resonant condition expected at the reference
value 2.51× 106 m/s. We also note that, without control,
chaos is continuously increasing as expected since when
the phase velocity difference decreases resonance overlap
(and chaos) increases. Figure 18 shows how two beams
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Fig. 16. (Color online) Enlargement of velocity distribution
functions close to initial beam velocity for different control am-
plitudes: (a) larger, (b) lower than experimentally optimized
amplitude 140 mV. (c) velocity distribution functions for three
different control amplitudes at fixed control phase equal to 0◦.
The overlap parameter is s = 1.27.

Fig. 17. Kinetic coherence versus initial beam velocity with
optimized control term amplitude (140 mV) and phase (0◦).
(a) Squares (resp. triangles) show the values for velocity distri-
bution function obtained with (resp. without) applied control
term. (b) Ratio between kinetic coherence measured with and
without control for different initial beam velocity. The overlap
parameter is s = 1.27.

with close initial velocities with similar chaotic behavior
have two different responses to the same control term.

4 Summary and conclusion

Even if a modification of the perturbation of a Hamil-
tonian system generically leads to the enhancement of
the chaotic behavior, we have applied numerically and
experimentally a general strategy and an explicit algo-
rithm to design a small but apt modification of the po-
tential which drastically reduces chaos and its attendant
diffusion by channeling chaotic transport. The experimen-
tal results show that the method is tractable and robust,
therefore constituting a natural way to control the dy-
namics. The robustness of the method has been checked
for an overlap parameter equal to s = 1.27 by changing
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Fig. 18. (Color online) Velocity distribution functions for two
close values of initial beam velocity (a) with and (b) without
applied control. The overlap parameter is s = 1.27.

phase and amplitude of the control term and beam veloc-
ity to check resonance condition on the helix dispersion
relation. All these measurements have shown a significant
region around the prescribed values for which the control
is efficient. The implementation is realized with an addi-
tional cost of energy which corresponds to less than 1% of
the initial energy of the two-wave system. We stress the
importance of a fine tuning of the parameters of the the-
oretically computed control term (e.g., amplitude, phase
velocity) in order to force the experiment to operate in a
more regular regime. For such a reason an iterative pro-
cess to find some optimal experimental conditions is sug-
gested for future improvement of the method. Other con-
trol terms can be used to increase stability (by taking into
account the other Fourier modes of f given in Eq. (9) when
experimentally feasible). The achievement of control and
all the tests on a TWT assert the possibility to practically
control a wide range of systems at a low additional cost
of energy.
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